
Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 1

Overview

The loadsheets program appends rows to an existing Excel “template” file from one or more Excel “source”

files as directed by a configuration file. This approach provides a simple, automated way to create “loadsheets” of

new product information as required by several industry retailers and distributors.

Installation

The setup program is a Windows Installer package stored in a zip file and downloaded from our website. The installer
is digitally signed and should not be used if "Unknown" or has a signer other than "Winsby Group LLC". It is a 64bit
console app that installs under the local user (so admin rights are not required). The name of the file is:

loadsheets_setup_(version).msi

Once installed, file explorer will open the new “loadsheets” directory in your Documents. For example:

Here you will find a “Samples” folder which contains a few example projects for you to explore. Unlike

other Windows applications you may be familiar with, loadsheets does not have a user interface.

This means that everything is run from the command line (either cmd or powershell). But, in order to

make it easier to run, you can create “batch” files which will run the project and present the results in

notepad.

For example, here are the contents of T1.bat:

The first line is the command that runs the loadsheets program. Note that we’re telling it which

configuration file to use, and instructing it to “highlight” any cells in the output Excel file that have

problems.

The second line uses “notepad” to display the results of the run to the screen. This “log file” always uses

the name of the template file as its base name (with a .log extension).

The “pause” simply keeps the command window from closing until you press enter.

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 2

Features

1. Excel (xlsx) and CSV files are used for source data.

2. Excel (xlsx) files are used for template layout (and final output).

3. Multiple source files can be used (joined together by part number).

4. Coded (“stacked”) data sources are supported (e.g. multiple rows per part number: Part, Code, Description).

5. Console application allows automated processing.

6. Data validation at the field level.

7. Data validation between fields (including conditional requirements)

8. One or more fields may be used for filtering rows with full Boolean expressions:

$LINE_CODE == "XYZ" && $POP_CODE in ["A","B"]

9. Option to include runtime parameters for filtering or other conditional validation:

Loadsheets -config oreilly.yaml -params "p1=ABC"

$LINE_CODE == p1

10. Built-in functions which can be used in conditional expressions:

$EFF_DATE < Today()
$EFF_DATE < Date(p1)

11. Log file includes complete error descriptions with cell references (for both input and output identification).

12. Option to highlight any cells with errors in the output file.

13. All output values default to string values, with the ability to force Excel native data types if required.

Configurations

All processing jobs are controlled by a configuration file specifically designed for each customer’s requirements.

These files are written in a markup language (called YAML) using any text editor (e.g. Notepad++, VS Code, etc.). It

is usually easiest to start with an existing config file and make changes as necessary to fit your current

requirements.

Besides the configuration file (aka “config” file), we also need a “template” file and at least one “source” file. The

template file is simply an Excel file with placeholders for the source data. For example, here is a very simple

template file with just four template placeholders (or “variables”):

Note that template variables start with a dollar sign and are all included on a single row. In this example, we’ve

started on row 2, but you can start on any row needed (e.g. some templates have several rows of explanation at

the top and so you’d want to start your data after those lines). There is a “DataRow” setting in the config file to

indicate which row contains the template variables.

Let’s now look at a source file that we might use to fill this template.

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 3

Note that the headings in the source file do not need to match the headings in the template file. Instead, we use

the config file to help us match them up.

There are two main sections to a config file, “Template” and “Sources”. The Template section defines the output

requirements (for filling in an existing Excel file). The Sources section defines the data inputs that will be used to fill

the template.

Minimal Example

Sometimes it is easiest to look at a simple example. Here is a config file that fills a single column (the part number)

in the above template file.

Description: Minimal Example

Template:
 FileName: "Template.xlsx"
 WorkSheet: "Data"
 DataRow: 2
 Variables:
 - {Name: $PART_NUMBER, Type: "string", Required: true}

Sources:
 - Name: Primary
 Description: Main Parts file
 FileName: "Data.xlsx"
 WorkSheet: "Data"
 HeaderRow: 1
 Columns:
 - { Heading: "Part Number", Format: "part", TemplateVariable: $PART_NUMBER }

If we tried to run with this config against the above data and template files, though, we’d get an error because

there are three variables defined in the template file that are not defined in the Template section of the config file.

If we removed the "$" from those extra variables, however, we’d get something like the following:

Note that the part number was properly populated, but why was the other data copied down on each row? This

example shows how you can provide “default” values that never change (and are not provided by a data source).

Samples

As mentioned above, sample projects are provided to get you started. It is usually easier to copy an existing config

file and make changes than to start from scratch.

Required Fields

There are two methods to require that a template variable be filled from a data source. The easiest way is simply

to add “Required: true” to a variable definition (all fields default to false).

The second way is to add required logic using the “RequiredIf” condition. This allows you to set the required

flag based on other variables on the record. For example, you might want to require an inner pack length

whenever an inner pack quantity is provided. An example of this is shown below (and in Sample2):

- {Name: $IN_PK_LEN, Type: "number", RequiredIf: "$IN_PK_QTY != nil && $IN_PK_QTY > 1"}

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 4

Filtering

There are times when you might want to exclude some part numbers from the results. This can be done by a

“Filter” expression added to one or more variables in the Template section. For example:

- {Name: $PARTNUMBER, Type: "date", Required: true, Filter: "$POP_CODE in ['A','B']"}

If more than one Filter is defined, all must be satisfied in order for the row to be included. If there is a chance that

the source data is empty, you must add a check for “nil” to keep the process from attempting to compare a nil

value. For example:

Filter: "$POP_CODE != nil && $POP_CODE in ['A','B']"

This tells the processor to first check that the pop code is not empty, before attempting the “in” operation. The

“&&” means AND which will exit (“sort-circuit”) the evaluation if evaluating to false.

Built-In Functions

There are server functions provided for special use when creating conditional expressions. Two of the more useful

functions concern dates. The Today() function allows you to compare a date against today. For example:

Filter: "$EFF_DATE != nil && $EFF_DATE < Today()"

The second function converts a string date to the internal Excel date format.

Filter: "$EFF_DATE != nil && $EFF_DATE < Date('2020-01-01')"

Because date comparisons are so common, we included three additional functions to make that easier. For

example, the following will only include rows where $EFF_DATE is on or before '2020-01-01':

Filter: "DateOnOrBefore($EFF_DATE, '2020-01-01')"

Note that you do not need the test for “nil” because that is handled by the function.

Runtime Parameters

It’s sometimes helpful to provide a value for use in one of the conditional expressions at runtime rather than

needing to edit the config file each time. For example, instead of hard-coding the date in the above filter, you

might want to write something like:

 Filter: "$EFF_DATE != nil && $EFF_DATE < Date(p1)"

Here, we’ve defined a parameter called "p1" which will hold the value we include on the run command. That might

look something like:

loadsheets -config t2.yaml -highlight -params "p1=2020-01-01"

If you need to supply more than one parameter, simple separate them by a comma. For example:

loadsheets -config t2.yaml -highlight -params "p1=2020-01-01,p2='XYZ'"

See the section on “Writing Expressions” for more information.

SET /p Command (for user prompts):

Here is how to prompt the user for a value and pass it into the loadsheets program (for use in a filter expression).

set /p EXPDATE="Cutoff Date (yyyy-mm-dd): "

loadsheets -config t1.yaml -highlight -params "cutoff=%EXPDATE%"

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 5

The "EXPDATE" above could be any name (that is not already used as a variable). Note the use of it with %% around

it in the -params phrase.

The actual variable, in this case, that is passed in is "cutoff" (you could make it p1, p2 or whatever you like). You

would use the variable "cutoff" in the config file like this:

Filter: "DateBefore($EFF_DATE, cutoff)"

Resulting log file:

loadsheets (v1.0.5)

...

Run Parameters: [cutoff=2021-01-01]

...

Warnings: 1, Elapsed time: 496ms

Coded Files (Stacked Columns)

It’s common to have source files with coded values which need to represent different columns in the output

template. For example,

The biggest difference is that we need a repeating part number column and some kind of code to indicate the type

of data represented.

In the above example, "SHO” represents the “Short Description” and must be “pivoted” to the correct column in

the output. Presumably, there would be one template variable (column) for each code provided.

The program supports this type of data source with two special template variable values, lookup:code and

lookup:value. For example:

 Columns:
 - { Heading: "PartNo", Format: "part" }
 - { Heading: "Code", Format: "text", TemplateVariable: "lookup:code" }
 - { Heading: "Description", Format: "text", TemplateVariable: "lookup:value"}

We then need a Code table to associate each lookup:code value to an actual template variable:

 Codes:
 - { Code: "DES", TemplateVariable: $LONG_DESCR }
 - { Code: "EXT", TemplateVariable: $EXT_DESCR }
 - { Code: "SHO", TemplateVariable: $SHORT_DESCR }

If you include more than one “lookup:code” column, they will be combined to form the code by concatenating the
data in order separated by a hyphen. So, for example, DES-EN to create an English Long Description. If a lookup
code column is empty, the hyphen separator will not be included (so you will never have a code with --).

 Columns:
 - { Heading: "PartNumber", Format: "part" }
 - { Heading: "TypeCode", Format: "text", TemplateVariable: "lookup:code" }
 - { Heading: "RecordNumber", Format: "text", TemplateVariable: "lookup:code" }
 - { Heading: "LanguageCode", Format: "text", TemplateVariable: "lookup:code" }
 - { Heading: "Content", Format: "text", TemplateVariable: "lookup:value"}

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 6

 Codes:
 - { Code: "SHO-EN", TemplateVariable: $SHORT_DESCR_EN }
 - { Code: "SHO-ES", TemplateVariable: $SHORT_DESCR_ES }
 - { Code: "FAB-1-EN", TemplateVariable: $FAB_1_EN }
 - { Code: "FAB-2-EN", TemplateVariable: $FAB_2_EN }
 - { Code: "FAB-3-EN", TemplateVariable: $FAB_3_EN }

See Sample1 for a working example of a coded data source.

Source Formats

Each source column must have a “Format” which defines how to interpret the information found there.

Format Type Special Handling

text alpha-numeric plus any special characters spaces trimmed from front and back

number no decimal point validate as 64bit integer

decimal with decimal point extraneous decimal places removed

date yyyy-mm-dd string (or Excel native date) validate between 1/1/1900 and 1/1/2200

price 0.0000 string will always be 4 decimal places

gtin14 number front zero filled to 14 characters, check-digit validated

part alpha-numeric plus any special characters used to identify part number column

Initial Data Conversion

Each data element (i.e. source column) undergoes two separate data conversion steps, once when reading and a

second time when writing.

All data is read from Excel as a string regardless of how they were entered. The following source data, for example,

shows three types of data (text, dates and numbers):

The “Effective Date” column was entered (and interpreted) as a native Excel “Date” formatted number. So, when

the program reads B2, for example, it sees “43831” (which represents the number of days since 12/31/1899).

The “Big Number” column was entered as a “General” formatted number. As seen here, General format displays

large numbers in scientific notation. But C2, for example, is read as “1234567890123”.

It is important to note that both of these numbers are now stored internally by the program as strings (with

validations/conversions as described in the above table).

Calculated Values

The program also supports calculated values as shown above (here showing a date calculation, but any formula will

work).

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 7

Conditional Expression Variables

Any template variable found in a condition (i.e. RequiredIf and Filter) uses the “typed” (native) value, not the

“string” value. If a native value is missing (or when a conversion error occurs) the variable contains “nil”.

Template Types

Each template variable requires a “Type” which defines how the information is displayed in the output Excel file.

Type How Stored Style

string string value left aligned

number string value format integer number as text, right aligned

number! native Excel value general integer number format, right aligned

float string value format floating point number as text, right aligned

float! native Excel value general floating point number format, right aligned

float2 string value format number as text, right aligned

float2! native Excel value number format "0.00"

float4 string value format number as text, right aligned

float4! native Excel value number format "0.0000"

date string value format as text, left aligned

date! native Excel value formatted as "yyyy-mm-dd", left aligned

Final Data Conversion

When the variable data is written to the template file, the second data conversion (and presentation) is

performed. Note that the “!” styles should not generally be used because native values might not be presented

properly. For example, a price variable would not have trailing zeros (4.000 is stored as 4) and so depends on the

receiver to process that data properly. There are cases, however, where the receiver may request this format.

Command (Batch) File

Rather than typing loadsheet commands from a terminal window each time you want to process a job, you can

use a .bat (command) file to automate the process. For example

@echo off

cls

pushd %~dp0

set /p EXPDATE="Cutoff Date (yyyy-mm-dd): "

loadsheets -config t1.yaml -highlight -params "cutoff=%EXPDATE%"

start /b notepad++.exe "%CD%\t1_template.log"

start /b excel.exe "%CD%\t1_template_%date:~10,4%-%date:~4,2%-%date:~7,2%.xlsx"

pause

popd

The first line (@echo off) just keeps each line from displaying when executing. The “pushd” and “popd”

commands are a workaround required if you have the command file on a network drive and you do not have a

drive letter mapped for it. This is because CMD does not support UNC paths as current directories. pushd creates a

temporary mapped drive to the current working directory and popd removes that temporary mapping (and so

must be after the “pause” statement). The %CD% variable allows substituting the current working directory (caused

by the pushd command).

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 8

Path Names

All (non-absolute) filenames are relative to the directory where the configuration file is located. This includes all

relative paths (or files without a path) found in the yaml file. Under Windows, there are two absolute path formats

supported, drive letter (D:\path) or UNC (\\server\share). Under Linux, absolute paths start with a slash (“/”).

A “BasePath” option can be added to the config file to override the current working directory.

loadsheets config
Description: OReilly Loadsheet
BasePath: "d:/loadsheets/OReilly"
OutputFile: "../Output/Walker_{date}.xlsx"
LogFile: "../Logs/Walker_{date}.txt"

The “OutputFile” and “LogFile” options are also available for overriding default filenames and you can include

a special {date} macro which is replaced by today’s date. In the example above, OutputFile would be, for

example, d:\loadsheets\Output\Walker_2020-12-04.xlsx (./ represents the current directory, and

../ the parent directory).

Important Note: If you are including path separators in the config file or command line, use forward slashes as

shown above in these examples.

Writing Expressions

The program includes a very powerful expression processor for validation and filtering. Here are some of the

features and syntax used by that processor.

Supported Literals

• strings - single and double quotes (e.g. "hello", 'hello')

• numbers - e.g. 103, 2.5, .5

• dates - "2020-10-09" (yyyy-mm-dd)

Comparison Operators

• == (equal)

• != (not equal)

• < (less than)

• > (greater than)

• <= (less than or equal to)

• >= (greater than or equal to)

Logical Operators

• not or !

• and or &&

• or or ||

String Operators

• + (concatenation)

• matches (regex match)

• contains (string contains)

• startsWith (has prefix)

• endsWith (has suffix)

file://///server/share

Loadsheets December 5, 2020

©Copyright 2020 Winsby Group LLC. 9

Membership Operators

• in (contain)

• not in (does not contain)

Example:

$GROUP in ["human_resources", "marketing"]

Numeric Operators

• .. (range) The range is inclusive: 1..3 == [1, 2, 3]

Example:

$AGE in 18..45

Ternary Operators

• $FOO ? 'yes' : 'no'

Example:

$AGE > 30 ? "mature" : "immature"

Builtin functions

• Today() - returns today's date for comparisons (e.g. "$EFF_DATE < Today()")

• Date(d) - encodes a date string (yyyy-mm-dd) for comparisons (e.g. "$EFF_DATE < Date(p1)")

• DateEqual(d1, d2) – true if the two dates are the same

• DateBefore(d1, d2) – true if “d1” is before “d2”

• DateOnOrBefore(d1, d2) – true if “d1” is equal to, or before “d2”

• Len() (length of array, map or string)

• all() (will return `true` if all elements satisfy the predicate)

• none() (will return `true` if all elements do NOT satisfy the predicate)

• any() (will return `true` if any element satisfies the predicate)

• one() (will return `true` if exactly ONE element satisfies the predicate)

• count() (returns number of elements what satisfies the predicate)

Notice

Winsby Group, LLC makes no warranty of any kind with regard to this software, including, but not limited to the

implied warranties of merchantability and fitness for a particular purpose.

Please review results carefully before using data generated by this software. While we do our best to ensure

accuracy, we cannot guarantee it. By using this program, you accept all responsibility for any errors or omissions it

may produce.

